Urinalysis
Sample collection

- „night break” 6-8 h – first morning sample
- dry, sterile container
- clean genital area
- mid-stream
- 2 hrs: collection - test
 - if it’s impossible – store in the fridge (+4°C) (up to 24 hrs)
What can we find in the urine?

• Physical features
 – color
 – clarity
 – specific gravity
 – smell
 – volume

• Chemical features
 – protein
 – glucose
 – ketones
 – bile
 – urobilinogen
 – azotines
 – pH
What else can we examine?

• Urine sediments
• 24 hour urine collection
Color

- **yellow**
 - shades of yellow
 - from very pale or colorless to very dark or amber.

- **red**
 - from pink to brown
 - blood (centrifuged specimen shows RBCs)
 - drugs: rifampicin, ibuprofen, doxorubicin, L-DOPA,
 - fruits: blackberries, beets,
 - porphyria
 - presence of urates
 - bile
Color

• brown/black
 – darkens during standing (phenol, cresol, naphtol intoxication)
 – ferrum
 – alkaptonuria
 – melanin
• dark orange
 – bile
• blue
 – methyl blue
• Green
• bacteria
• drugs
Clarity

- clear
- morphotic elements
 - RBC, WBC, epithelial cells
- bacteria
- fat

- not always decreased clarity is a result of pathology
 !!!
 - phosphates
Screening test - dipsticks

• Thin, plastic strips on which are fixed chemically impregnated squares of porous material.
• Are able to react with various components of the urine
• Can detect: pH, specific gravity, protein, glucose, nitrites, ketones, bile, urobilinogen, leukocytes and RBC
• Vitamin C can stop oxydase in reaction with glucose and esterase in reaction with leukocytes
Urine Specific Gravity

- renal tubular function
 - 1,003-1,030 g/ml
 - N: 1,020 g/ml (1,015-1,020)

- urinometer

- dipstick tests
 - falsly (+) → protein, ketones
 - falsly (-) → glucose, ↑pH, urea
Urine Specific Gravity

• **increase**
 – Temperature (fever)
 – osmotic diuresis
 • proteinuria, glukosuria, radiographic contrast medium, mannitol, dextran
 – antibiotics
 – detergents

• **Decrease**
 – diluted specimen
 – diuretics
 – hypothermia
 – acidosis
Osmolality

- 500-1200 mOsm/l
- Last two digits of specific gravity x 26

- Renal’s function control
- Low osmolality – renal acute renal failure
- High osmolality – prerenal acute renal failure
pH 5.5-6.5

• ↑
 – vegetarian food
 – bacterial infection
 – drugs

• ↓
 – bacterial infection (Mycobacterium tuberculosis
 – meat in diet
 – metabolic acidosis
 – methyl alcohol
 – fever
Volume (I)

- Depends on:
 - diet
 - fluids intake
 - loss of fluides
 - renal function
 - age
 - sex
 - psychic condition

Adults
- 600-2500 ml / 24h (average - 1200)
- night volume usually <700ml/24h
- specific gravity < 1,015

Children
- premature infants - 1-3ml /kg/h
- full-term infants - 15-60 ml/24h
- 2 weeks - 250-400 ml/24h
- 8 weeks - 250-400 ml/24h
- 1 year - 500-600 ml/24h
Volume (II)

ANURIA < 100 ml/24h
- bilateral complete urinary tract obstruction
- acute cortical/tubular necrosis
- necrotizing glomerulonephritis

OLIGURIA
- < 500 ml/24h (or 20ml/h)
- <15-20ml/kg/24h in children

min. 500ml/24h !!

POLIURIA
- > 2500 ml/24h

diabetes insipidus
Protein

- < 150 mg/24h
 - not detected by routine clinical methods
 - Tamm - Horsfall protein
 - products of epithelium degradation
- detection of various renal disorders
- detection of Bence-Jones proteinuria (problem !)
- > 3 (3,5) g/24h – severe proteinuria
Functional proteinuria

- not associated with systemic or renal damage.
 - severe muscular exertion
 - pregnancy
 - orthostatic proteinuria
 - changes of temperature
- slight to mild proteinuria associated only with the upright position
- etiology is unknown
Organic proteinuria

• associated with
 – systemic disease
 – renal pathology
Prerenal proteinuria

- Fever
- Venous congestion
- Renal hypoxia
 - severe dehydration
 - shock
 - severe acidosis
 - acute cardiac decompensation
 - severe anemias
- Hypertension
- Bence Jones protein – Myeloma multiplex
Renal proteinuria: primary kidney disease

• Glomerulonephritis
• Nephrotic syndrome
 – primary or secondary
• Destructive parenchymal lesions
 – tumor
 – infection
 – infract
Renal proteinuria

• glomerular
 – selective – small proteins (40-90kD)
 • albumines (transferin, alfa-1-antitripsin) – 30mg/24h
 – nonselective – albumins + globulins
 • Ig (nephrotic syndrome, multiple myeloma, diabetes)

• tubular
 – disturbed reabsorbtion from renal tubules
 – B$_2$-microglobulin – 0,25mg/24h
Postrenal proteinuria

- Infection of the renal pelvis or ureter
- Cystitis
- Urethritis or prostatitis
- Contamination with
 - vaginal secretions
 - sperm
Microalbuminuria

• 30-300 mg/24h
• first symptom of diabetic nephropathy
• not detected with dipstick tests !!!
Glucose

- not detectable by routine methods!
- renal threshold
 - 180mg/100ml serum glucose level
 - pregnancy – 140-150mg%
“Physiological glucosuria”

- glucose overload
- pregnancy
- prolonged stress
Glucosuria without hyperglycemia

- glucosuria of pregnancy (also lactosuria)
- renal glucosuria
- inborn metabolic errors - Fanconi`s syndrome
- nephrotoxic chemicals
 - carbon monoxide
 - lead
 - mercuric chloride
Glucosuria with hyperglycemia

- diabetes mellitus
 - the most common and important
- increased intracranial pressure
 - tumors, hemorrhage, skull fracture
- endocrine diseases or hormone producing tumors
 - Cushing`s syndrome, pheochromocytoma
- hyperthyroidism
- after myocardial infarction
 - occasionally, transient
- after some types of anesthesia
 - ether
Tests for urine glucose

• glucose oxidase enzyme paper dipsticks

• Clinitest
 – based or copper sulfate reduction by reducing substance

• false positive results (reduction methods)
 – hydrogen peroxide
 – hypochlorites (found in certain cleaning compounds)
 – sugars other than glucose galactose, lactose
 – hemogentisic acid (alkaptonuria)

• large amounts of vitamin C
 – false negative results with the glucose oxidase methods
 – false positive results with reducing substance methods
Ketonuria (I)

- N: (-)
- acetone, beta-hydroxybutyric acid, acetoacetic acid (dipstick tests)
- screening for ketoacidosis (diabetes mellitus)
- confirmation of fasting in insulinoma
Ketonuria (II)

• metabolic conditions
 – diabetes mellitus
 – renal glycosuria
 – glycogen storage disease

• dietary conditions
 – starvation
 – high-fat diet

• increased metabolic requirements
 – hyperthyroidism
 – fever
 – pregnancy and lactation
Nitrites

- N: (-)
- indirect test for bacteriuria
- sensitivity of the nitrite test versus quantitative urine culture is only about 50%
- „night-break” at least 8hrs
Bile

• conjugated bilirubin
 – not detected in normal condition

• ↑
 – biliary tract obstruction
 • extrahepatic (common duct obstruction)
 • intrahepatic

• liver cell injury
 • active cirrhosis
 • hepatitis virus hepatitis)
Urobilinogen

- N: trace
- produced from conjugated bilirubin by metabolic activity of bacteria in the intestine
- the 24-hour specimen must contain a preservative
- routine specimen test must be done within 30 minutes after collection
 - rapidly oxidizes in air to nondetectable urobilin
Urobilinogen

- \(\uparrow\)
 - marked increase in production secondary to increase in serum unconjugated bilirubin
 - hemolysis
 - parenchymal liver damaged
 - cirrhosis or severe hepatitis

- \(\downarrow\)
 - cholestasis
 - \(\downarrow\) number of bacteria in intestine
Microscopic examination of urinary sediment

- centrifuged urinary sediment
- filed of view - 40x magnifying lens
Red blood cells

- 0-5
Prerenal haematuria

• clotting disorders
 – purpura
 – anticoagulants

• blood dyscrasias
 – sickle cell anemia or leukemia

• malignant hypertension

• subacute bacterial endocarditis
Renal haematuria

- renal infraction
- collagen diseases
 - lupus
 - polyarteritis nodosa
- renal tumors
- tuberculosis
- acute glomerulonephritis
Postrenal haematuria

- benign prostate hyperplasia
- bladder or urethral infection
- cystitis, urethritis, and prostatitis
- in the female, menstrual blood
- stones
White blood cells

- 0-8
- > 8 => pyuria

- infections
- fever
- dehydration
- physical exertion
White blood cells

• may originate anywhere in the urinary tract

• renal origin
 – accompanied by significant proteinuria
 – WBC casts
 – WBCs in clumps

• lower urinary tract
 – may be associated with slight proteinuria
Casts

- protein conglomerates
- shape of the renal tubules in which they were formed
 - distal and collecting tubules
- pH:
 - protein casts dissolve in alkaline medium.
- Concentration
 - dissolve in dilute medium.
- Proteinuria
- Stasis
 - time for protein precipitation within tubules.
Hyaline casts

- composed of protein alone (Tamm - Horsfalle protein)
- they pass almost unchanged down the urinary tract
 - dull
 - nearly transparent
 - reflect light poorly compared with waxy casts
- often hard to see
- sometimes cellular elements may be trapped within hyaline casts
- basic type of casts
Cellular casts

- cells are trapped inside renal tubules in a protein matrix
- the cast is named for the cells inside it
Cellular casts

- RBC casts
 - glomerulonephritis
 - presence of RBC in urine
Cellular casts

- WBC casts
 - pyelonephritis
Cellular casts

• Epithelial
 – desquamated renal epithelial cells
 – tumors, glomerulonephritis,
Crystals

• often overemphasized in importance
• may be a clue to calculus formation and certain metabolic diseases
• tend to be pH dependent:
 • Acidic urine:
 – uric acid
 – cystine
 – calcium oxalate.
 • Alkaline urine:
 – phosphates (triple phosphate - magnesium ammonium phosphate)
Crystals

Calcium oxalate Triple phosphates

Amorphous urates Uric acid
Microbes and parasites

• **Trichomonas vaginalis**
 – special procedure of sample collection
 – sample MUST be stored in 37°C
 – short time: collection – examination (minutes)

• **Bacteria**
 – movement
 – sterile container

• **Yeast**
 – relatively common sediment finding
 • Candida albicans - most common
 – often misdiagnosed as RBCs